
XEP-0024: Publish/Subscribe

DJ Adams
mailto:dj.adams@pobox.com

xmpp:dj@gnu.mine.nu

Piers Harding
mailto:piers@ompa.net
xmpp:piers@gnu.mine.nu

2003-04-22
Version 0.2

Status Type Short Name
Retracted Standards Track None

A publish-subscribe protocol for Jabber.

mailto:dj.adams@pobox.com
xmpp:dj@gnu.mine.nu
mailto:piers@ompa.net
xmpp:piers@gnu.mine.nu

Legal
Copyright
This document has been placed in the public domain.

Permissions
Warranty
Liability
Conformance

Contents
1 Abstract 1

2 Introduction 1

3 The Specification 2
3.1 Subscribe/Unsubscribe Context . 2

3.1.1 Publisher-Specific Subscriptions and Unsubscriptions 3
3.1.2 Non-Publisher-Specific Subscriptions and Unsubscriptions 5
3.1.3 Further Notes . 7

3.2 Publish Context . 9
3.3 Distributing Published Information . 11
3.4 Delivery Sensitivity . 11
3.5 Use of Resources . 12

4 Implementation Notes 13
4.1 Publisher Discovery . 13
4.2 Cross-Server Relationships . 14

4.2.1 Proxy Subscriptions . 14
4.2.2 Willingness to Serve . 16

4.3 Subscriber Anonymity and Acceptance? . 17

2 INTRODUCTION

1 Abstract
Pubsub (”publish/subscribe”) is a technique for coordinating the efficient delivery of infor-
mation from publisher to consumer. This specification describes the use of pubsub within a
Jabber context and is a result of two separate but related goals:

• to be able to exchange information _within_ a Jabber environment (for example contin-
uously changing personal information between users)

• to be able to exchange information _using_ Jabber as a mechanism for
– organising that exchange
– providing transport for the information

The specification details the use of the Jabber protocol elements and introduces a new names-
pace, jabber:iq:pubsub. It also includes notes on actual implementation of such a mechanism
in Jabber.

2 Introduction
It’s clear that as Jabber is deployed over a wider spectrum of platforms and circumstances,
more and more information will be exchanged. Whether that information is specific to Jabber
(JSM) users, or components, we need an mechanism to be able to manage the exchange of this
information in an efficient way.
For example, it is currently the trend to embed information about a particular client’s
circumstance inside presence packets, either in the <status/> tag or in an <x/> extension. One
example that comes to mind is ”song currently playing on my MP3 player” (to which I have
to admit some responsibility for the meme in the first place). While embedding information
inside presence packets and having that information diffused to the users who are subscribed
to that user’s presence has the desired effect, it has a couple of non-trivial drawbacks:

• the diffusion is inefficient, sending potentially huge amounts of data to recipients who
aren’t interested

• the distribution is tied to closely to presence subscription; any entity that wants to re-
ceive information must be subscribed to the source’s presence, and there is no mech-
anism for specifying _what_ information they wish to receive. It is also arguably too
closely tied to the JSM to be useful for _component_-based information exchange.

This is above and beyond the simple fact that this overloading of presence packets and the
presence subscription and diffusion mechanism can only end in tears.
It would be far better to have a separate (sub-)protocol that enabled entities to take part in
publish/subscribe relationships, and have a service that facilitated the efficient exchange of

1

3 THE SPECIFICATION

information. Not only would it relax the undue pressure on the presence mechanism, but it
would also allow people to use Jabber, which is, after all, about exchanging structured content
between endpoints, as a publish/subscribe _mechanism_ in its own right.
This specification describes a publish/subscribe protocol in terms of IQ packets with payload
data in a new namespace, jabber:iq:pubsub. The choice for this namespace is slightly arbitrary
- it was the same namespace used in temas’s original document, seems to fit well, and we need
a namespace to focus on.1
The aim of the specification is to provide for a facility where Jabber entities can subscribe to
(consume) and publish (emit) information in an efficient and organised way. These entities
could be JSM users or components.
Push technology is back with a vengeance. Jabber can play a fundamental part.

3 The Specification
The pubsub services will be typically provided by a component. In what follows, there are
generally three parties involved:

• the subscriber

• the pubsub service

• the publisher

Bear in mind that it is perfectly possible for a subscriber to be a publisher, and a publisher to
be a subscriber, too.
The pubsub traffic will be carried in info/query (IQ) packets. All of the data in these packets
will be qualified by the jabber:iq:pubsub namespace.
Pubsub scenarios can be seen in a subscribe (or unsubscribe) context or a publish context. In
light of this, we will examine the IQ packets used in these contexts.

3.1 Subscribe/Unsubscribe Context
A potential consumer, or recipient, of published information, needs to request that he be sent
that published information. Requesting to receive, or be pushed, information is known as
subscribing.
A subscription request generally takes this form:

Listing 1: General form of a subscription
SEND: <iq type=’set’ from=’subscriber ’ to=’pubsub ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>

1It may well be that we will move to a URI-based namespace in the form of a URL pointing to this specification.

2

3 THE SPECIFICATION

<subscribe to=’publisher ’>
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>
...
<ns>namespace:N </ns>

</subscribe >
</query >

</iq>

RECV: <iq type=’result ’ to=’subscriber ’ from=’pubsub ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher ’>
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>
...
<ns>namespace:N </ns>

</subscribe >
</query >

</iq>

3.1.1 Publisher-Specific Subscriptions and Unsubscriptions

Subscriptions can be specific to a publisher, in which case a to attribute is specified in the
<subscribe/> tag:

Listing 2: Publisher-specific subscription
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher ’>
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisher ’>

<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
</query >

</iq>

3

3 THE SPECIFICATION

In this case, the namespaces specified will be added to any existing list of namespaces already
recorded for that subscriber:publisher relationship. In other words, it’s a relative, not an
absolute, subscription request.
It is also possible in a publisher-specific subscription to omit specific namespaces, if you want
to be sent everything that particular publisher might publish:

Listing 3: Publisher-specific subscription without namespace specification
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber.localhost ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher ’/>
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber.localhost ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisher ’/>

</query >
</iq>

This type of subscription should have the effect of absolutely replacing any previous
namespace-specific subscription to the publisher specified.
If a subscriber wishes to cancel a subscription from a particular publisher, he can send an
unsubscribe like this:

Listing 4: Publisher-specific unsubscription
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<unsubscribe to=’publisher ’>
<ns>namespace:1 </ns>

</unsubscribe >
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<unsubscribe to=’publisher ’>

<ns>namespace:1 </ns>
</unsubscribe >

</query >
</iq>

This should have the effect of removing the subscription from that publisher for the names-
paces specified.

4

3 THE SPECIFICATION

You can also send an unsubscribe without specifying any namespaces:

Listing 5: Publisher-specific general unsubscription
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber.localhost ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<unsubscribe to=’publisher ’/>
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber.localhost ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<unsubscribe to=’publisher ’/>

</query >
</iq>

This should have the effect of removing any subscription relationship with the publisher
specified. Note, however, that this won’t stop the subscriber being pushed information from
that publisher if he’s specified a ”publisher-generic” subscription (see next section).

3.1.2 Non-Publisher-Specific Subscriptions and Unsubscriptions

As well as being able to subscribe to specific publishers, it is also possible to subscribe to
receive data, according to namespace, regardless of publisher:

Listing 6: General namespace specific subscription
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe >
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe >

<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
</query >

5

3 THE SPECIFICATION

</iq>

This means that the subscriber wishes to be pushed information in the namespaces specified,
regardless of who publishes it. Like the publisher-specific subscribe that specifies namespaces,
this request is relative, in the namespaces are added to any existing namespaces already
recorded for this generic subscription.
Subscribing to everything from everyone is probably not a good idea and we should not allow
this. (The format of the request is actually used in an IQ-get context - see later).

Listing 7: This is not allowed
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe/>
</query >

</iq>

RECV: <iq type=’error ’ from=’pubsub.localhost ’
to=’subscriber@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe/>

</query >
<error code=’405’>Not Allowed </error >

</iq>

Likewise, you can unsubscribe from certain namespaces in this non-publisher-specific context
like this:

Listing 8: General unsubscription to specific namespaces
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber.localhost ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<unsubscribe >
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</unsubscribe >
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber.localhost ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<unsubscribe >

<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</unsubscribe >

6

3 THE SPECIFICATION

</query >
</iq>

If there are any subscriptions to specific publishers for the namespaces specified here, they
should be removed (for those namespaces) in addition to the removal from the ’all publishers’
list.
Finally, a subscriber can wipe the slate clean like this:

Listing 9: Wiping the slate
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber.localhost ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<unsubscribe/>
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber.localhost ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<unsubscribe/>

</query >
</iq>

which should have the effect of removing all namespace subscriptions from everywhere.

3.1.3 Further Notes

All the examples so far have shown actions on the subscriber’s part, and have consisted of
IQ-sets. In an IQ-set, within the jabber:iq:pubsub namespace, multiple children can exist in
the query payload, but those children must be of the same type. In other words, you can send
multiple <subscribe/>s, or multiple <unsubscribe/>s, but not a combination of the two.
This is allowed:

Listing 10: Subscribing to more than one publisher at once
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisherA ’>
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
<subscribe to=’publisherB ’>

<ns>namespace:3 </ns>
</subscribe >

</query >

7

3 THE SPECIFICATION

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisherA ’>

<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
<subscribe to=’publisherB ’>

<ns>namespace:3 </ns>
</subscribe >

</query >
</iq>

But this is not allowed:

Listing 11: Subscribes and unsubscribes in same IQ-set is not allowed
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber.localhost ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisherA ’>
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
<unsubscribe to=’publisherB ’>

<ns>namespace:3 </ns>
</unsubscribe >

</query >
</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber.localhost ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisherA ’>

<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
<unsubscribe to=’publisherB ’>

<ns>namespace:3 </ns>
</unsubscribe >

</query >
<error code=’400’>

Bad Request: only subscribes or unsubscribes
</error >

</iq>

In the casewheremultiple <subscribe/>s or <unsubscribe/>s appear in an action, each element
will be processed in turn, as they appear in the payload.

8

3 THE SPECIFICATION

As well as actions, the subscriber can query his subscription using an IQ-get in the jab-
ber:iq:pubsub namespace. This should return a list of the subscribers current subscriptions,
like this:

Listing 12: Querying current subscription
SEND: <iq type=’get’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe/>
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’subscriber@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe >

<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
<subscribe to=’publisherA ’>

<ns>namespace:2 </ns>
<ns>namespace:4 </ns>

</subscribe >
<subscribe to=’publisherB ’>

<ns>namespace:5 </ns>
</subscribe >

</query >
</iq>

Note the two references to namespace:2 - one inside the non-publisher-specific subscription
list and one inside the subscription list specific to publisherA. This example implies that
the non-publisher-specific and publisher-specific subscription information should be kept
separately. This is designed to make it easier on the subscriber to manage his specific
subscriptions over time.

3.2 Publish Context
In contrast to the subscribe and unsubscribe context, the publishing context is a lot simpler
to explain.
A publisher can publish information within a certain namespace, like this:

Listing 13: Publishing information
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’publisher@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

9

3 THE SPECIFICATION

<publish ns=’foo’>
<foo xmlns=’foo’>bar</foo>

</publish >
</query >

</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’publisher@localhost/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<publish ns=’foo’>

<foo xmlns=’foo’>bar</foo>
</publish >

</query >
</iq>

It’s also possible for a publisher to publish more than one item at once, like this:

Listing 14: Publishing information in different namespaces
SEND: <iq type=’set’ to=’pubsub.localhost ’

from=’publisher.localhost ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<publish ns=’foo’>
<foo xmlns=’foo’>bar</foo>

</publish >
<publish ns=’jabber:x:oob ’>

<x xmlns=’jabber:x:oob ’>
<url>http://www.pipetree.com/jabber/</url>
<desc>Some stuff about Jabber </desc>

</x>
</publish >

</query >
</iq>

RECV: <iq type=’result ’ from=’pubsub.localhost ’
to=’publisher.localhost ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<publish ns=’foo’>

<foo xmlns=’foo’>bar</foo>
</publish >
<publish ns=’jabber:x:oob ’>

<x xmlns=’jabber:x:oob ’>
<url>http://www.pipetree.com/jabber/</url>
<desc>Some stuff about Jabber </desc>

</x>
</publish >

</query >
</iq>

10

3 THE SPECIFICATION

Each published item is wrapped in a <publish/> tag. This tag must contain the namespace
of the item being publishes, in an ns attribute, as shown. This is distinct from the xmlns
attribute of the fragment of XML actually being published. It is theoretically none of the
pubsub component’s business to go poking around in the real published data, nor should it
have to. It needs to know what namespace is qualifying the published information that has
been received, so that the list of appropriate recipients can be determined.

3.3 Distributing Published Information
While it’s the responsibility of the publishing entities to publish information, it’s the respon-
sibility of the pubsub component to push out that published data to the subscribers. The
list of recipient subscribers must be determined by the information stored by the pubsub
component as a result of receiving subscription requests (which are described earlier).
On receipt of an IQ-set containing published information, the pubsub entity must determine
the list of subscribers to which that information should be pushed. If the IQ-set contains
multiple <publish/> fragments, this process must be carried out for each one in turn. 2
Taking the earlier example of the publishing of data in the ’foo’ namespace, the following
example showswhat the pubsub componentmust send to push this foo data out to a subscriber.

Listing 15: Pushing out published information to a subscriber
SEND: <iq type=’set’ to=’subscriber@localhost/foosink ’

from=’pubsub.localhost ’ id=’push1 ’>
<query xmlns=’jabber:iq:pubsub ’>

<publish ns=’foo’ from=’publisher@localhost ’>
<foo xmlns=’foo’>bar</foo>

</publish >
</query >

</iq>

The recipient is _not_ required to send an ’acknowledgement’ in the form of an IQ-result; the
idea that this _push_ of information is akin to how information is pushed in a live browsing
context (see jabber:iq:browse documentation for more details).

3.4 Delivery Sensitivity
When a pubsub service receives a publish packet like the ones above, it needs to deliver (push)
the information out according to the subscriptions that have been made.
However, we can introduce a modicum of sensitivity by using a presence subscription
between the pubsub service and the subscriber(s). If the subscriber wishes only to receive
2Whether a pubsub component implementation should be allowed to batch up individual published information
fragments for one recipient as a result of a large, multi-part incoming publishing IQ-set, is not specified here,
the choice is down to the implementer. Receiving entities should be able to cope with being pushed an IQ-set
with multiple fragments of published data.

11

3 THE SPECIFICATION

information when he’s online (this is a JSM-specific issue), then he needs to set up a presence
subscription relationship with the pubsub service. The pubsub service should respond to
presence subscriptions and unsubscriptions by

• accepting the (un)subscription request

• reciprocating the (un)subscription request

If the pubsub service deems that a published piece of information should be pushed to a
subscriber, and there is a presence subscription relationship with that subscriber, the service
should only push that information to the subscriber if he is available. If he is not available,
the information is not to be sent.
Thus the subscriber can control the sensitivity by initiating (or not) a presence relationship
with the service. If the subscriber wishes to receive information regardless of availability, he
should not initiate a (or cancel any previous) presence relationship with the service.
This loose coupling of presence relationships for sensitivity allows this specification to be
used in the wider context of component-to-component publish/subscribe where presence is
not a given.

3.5 Use of Resources
When in receipt of a pubsub subscription request from an entity where a resource is specified
in the JID, the pubsub component must honour the resource specified in the from attribute of
the request. For example, here’s a typical subscription request from a JSM user:

Listing 16: Incoming subscription request from a JSM user
RECV: <iq type=’set’ to=’pubsub.localhost ’

from=’subscriber@localhost/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher ’>
<ns>namespace:1 </ns>
<ns>namespace:2 </ns>

</subscribe >
</query >

</iq>

When storing the subscriber/publisher/namespace relationship matrix for eventual querying
when a publisher publishes some information, the pubsub component must use the full JID,
not just the username@host part.
Similarly, in this example:

Listing 17: Incoming subscription request from a component
RECV: <iq type=’set’ to=’pubsub.localhost ’

12

4 IMPLEMENTATION NOTES

from=’news.server/politics -listener ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher ’>
<ns>news:politics:home </ns>
<ns>news:politics:foreign:usa </ns>

</subscribe >
</query >

</iq>

the full JID of the component subscriber - news.server/politics-listener, should be used to
qualify the matrix.
This is because it allows the subscribing entities to arrange the receipt of pushed items by
resource. In the case of a JSM user, it allows him to organise his clients, which may have
different capabilities (some being able to handle the jabber:iq:pubsub data, others not) to
receive the ’right’ data. In the case of a component, it allows the component to associate
component-specific data with incoming published namespace-qualified information.

4 Implementation Notes
While the specification describes the fundamental building blocks of the pubsub protocol,
there are ideas that are not discussed above but nonetheless may be incorporated into an
implementation. There are other considerations that have to be made in the wider context of
publish and subscribe. Some of the main ones are discussed briefly here too.

4.1 Publisher Discovery
There is no part of this pubsub specification that determines how a potential subscriber
might discover publishers. After all, there are no rules governing which pubsub component a
publisher could or should publish to. And since pubsub subscriptions are specific to a pubsub
component, there is an information gap - ”how do I find out what publishers there are, and
through which pubsub components they’re publishing information?”
This problem domain should be solved using other methods, not with the actual jab-
ber:iq:pubsub specific namespace. A combination of jabber:iq:browse usage (the magic
ointment that heals all things) and perhaps a DNS style (or at least root-node-based) knowl-
edge hierarchy might be the right direction.
In the case where a server administrator wishes to facilitate pubsub flow between JSM users
on a server, a pubsub component can be plugged into the jabberd backbone, and there is
potentially no real issue with knowing which pubsub component to use, and where it is. But
what about if the JSM users on one server wish to build pubsub relationships with JSM users
on another server? (Note that this general question is not specific to JSM users, although
that example will be used here). The next two sections look at how these thingsmight pan out.

13

4 IMPLEMENTATION NOTES

4.2 Cross-Server Relationships
When JSM users on server1 wish to subscribe to information published by JSM users on
server2 (let’s say it’s the mp3 player info, or avatars) then there are some issues that come
immediately to mind:

• Does a JSM user on server1 (userA@server1) send his IQ-set subscription to the pubsub
component on server2 (pubsub.server2), or server1 (pubsub.server1)?

• If he sends it to pubsub.server2, can we expect pubsub.server2 to always accept that
subscription request, i.e. to be willing to serve userA@server1 (if pubsub.server2 knows
that pubsub.server1 exists)?

• Will there be performance (or at least server-to-server traffic) implications if many sub-
scription relationships exist between subscribers on server1 and publishers on server2?

4.2.1 Proxy Subscriptions

To reduce the amount of server-to-server traffic, we can employ the concept of ”proxy
subscriptions”. This is simply getting a pubsub component to act on behalf of a (server-local)
subscriber. Benefit comes when a pubsub component acts on behalf of multiple (server-local)
subscribers.
Here’s how such proxy subscriptions can work, to reduce the amount of server-to-server
traffic:
Step 1: Subscriber sends original subscription
JSM users on server1 wish to subscribe to information published by an entity on server2. Each
of them sends a subscription request to the _local_ pubsub component:

SEND: <iq type=’set’ to=’pubsub.server1 ’
from=’subscriber@server1/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisher.server2 ’>

<ns>namespace:1 </ns>
</subscribe >

</query >
</iq>

Step2: Pubsub component subscribes on subscriber’s behalf
The pubsub component knows about the publisher, and where (to which pubsub component)
that publisher publishes information. It formulates a subscription request and sends it to the
remote pubsub component:

SEND: <iq type=’set’ to=’pubsub.server2 ’
from=’pubsub.server1 ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>

14

4 IMPLEMENTATION NOTES

<subscribe to=’publisher.server2 ’>
<ns>namespace:1 </ns>

</subscribe >
</query >

</iq>

The remote pubsub component receives and acknowledges the subscription request, and the
local pubsub component relays the response back to the original requester:

SEND: <iq type=’result ’ from=’pubsub.server1 ’
to=’subscriber@server1/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisher.server2 ’>

<ns>namespace:1 </ns>
</subscribe >

</query >
</iq>

If the remote pubsub server was unable or unwilling to accept the subscription request, this
should be reflected in the response:

SEND: <iq type=’error ’ from=’pubsub.server1 ’
to=’subscriber@server1/resource ’ id=’s1’>

<query xmlns=’jabber:iq:pubsub ’>
<subscribe to=’publisher.server2 ’>

<ns>namespace:1 </ns>
</subscribe >

</query >
<error code=’406’>Not Acceptable </error >

</iq>

Step3: Publisher publishes information
The publisher, publisher.server2, publishes information in the namespace:1 namespace, to
the remote pubsub component pubsub.server2:

SEND: <iq type=’set’ from=’publisher.server2 ’
to=’pubsub.server2 ’ id=’p1’>

<query xmlns=’jabber:iq:pubsub ’>
<publish ns=’namespace ;1’>

<stuff xmlns=’namespace:1 ’>nonsense </stuff >
</publish >

</query >
</iq>

Step4: Pubsub component receives published information
The pubsub component pushes the published information to pubsub.server1, who has been
determined to be a valid recipient:

15

4 IMPLEMENTATION NOTES

RECV: <iq type=’set’ from=’pubsub.server2 ’
to=’pubsub.server1 ’ id=’p1’>

<query xmlns=’jabber:iq:pubsub ’>
<publish ns=’namespace ;1’ from=’publisher.server2 ’>

<stuff xmlns=’namespace:1 ’>nonsense </stuff >
</publish >

</query >
</iq>

Step5: Pubsub component forwards published information to original subscriber
The local pubsub component then diffuses the information received to the original subscriber:

SEND: <iq type=’set’ from=’pubsub.server1 ’
to=’subscriber@server1/resource ’ id=’p1’>

<query xmlns=’jabber:iq:pubsub ’>
<publish ns=’namespace ;1’ from=’publisher.server2 ’>

<stuff xmlns=’namespace:1 ’>nonsense </stuff >
</publish >

</query >
</iq>

This way, only a single published element must travel between servers to satisfy a multiplex
of subscribed entities at the delivery end.
Of course, this mechanism will rely upon knowledge about pubsub components and where
they’re available; furthermore, it will require knowledge about where publisher entities
publish their information. This knowledge, and the mechanisms to discover this sort of
information, is not to be covered in this spec, which purely deals with the subscription
and publishing of information. As SOAP is to UDDI (to use a slightly controversial pair of
technologies), so is jabber:iq:pubsub to this discoverymechanism as yet undefined. To include
the definition of such a discovery mechanism in this specification is wrong on two counts:

• Discovery mechanisms by nature should not be tied to specific areas

• Trying to load too much onto jabber:iq:pubsub will only produce a complex and hard-
to-implement specification

After all, the jabber:iq:pubsub spec as defined here is usable out of the box for the simple sce-
narios, and scenarios where discovery is not necessary or the information can be exchanged
in other ways.

4.2.2 Willingness to Serve

There are some situations where it might be appropriate for a pubsub component to refuse
particular subscription requests. Here are two examples:

16

4 IMPLEMENTATION NOTES

• Where a pubsub component that’s been designed, implemented, or configured to handle
local-only pubsub traffic, and a subscription request is received, specifying a publisher
that the local pubsub component knows to be one that publishes to a remote pubsub
component 3. In this case, the local pubsub component would be unwilling to provoke a
server-to-server connection and therefore unwilling to honour the request.

• Where a pubsub component receives a subscription request from a remote subscriber,
and that pubsub component knows that there’s a pubsub component local to the sub-
scriber. In this case, the (administrator of the) remote pubsub component might want
to encourage proxy subscriptions.

A refusal could take one of a number of guises:

Listing 18: A flat refusal
SEND: <iq type=’error ’ from=’pubsub.server2 ’

to=’subscriber@server1/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher.server2 ’>
<ns>namespace:1 </ns>

</subscribe >
</query >
<error code=’406’>Local pubsub only</error >

</iq>

Listing 19: A refusal with redirection
SEND: <iq type=’error ’ from=’pubsub.server2 ’

to=’subscriber@server1/resource ’ id=’s1’>
<query xmlns=’jabber:iq:pubsub ’>

<subscribe to=’publisher.server2 ’>
<ns>namespace:1 </ns>

</subscribe >
</query >
<error code=’302’ jid=’pubsub.server1 ’/>

</iq>

Note: This 302 redirect is not covered in the general protocol specification, but it’s an
interesting concept :-)

4.3 Subscriber Anonymity and Acceptance?
The jabber:iq:pubsub specification makes no provision for publishers to query a pubsub
component to ask for a list of those entities that are subscribed to (namespaces) it (publishes).
This is deliberate. Do we wish to add to the specification to allow the publisher to discover

3under other circumstances, this would trigger a ’Proxy Subscription’, as described earlier, if supported

17

4 IMPLEMENTATION NOTES

this information? If so, it must be as an optional ’opt-in’ (or ’opt-out’) tag for the subscriber,
to determine whether his JID will show up on the list. 4
Associated with this is the semi-reciprocal issue of acceptance? The specification deliberately
makes no provision for a subscription acceptance mechanism (where the publisher must first
accept a subscriber’s request, via the pubsub component). If we’re to prevent the publishers
knowing who is subscribing, ought we to give them the power of veto, to ’balance things out’?
Note that if we do, the acceptance issue is not necessarily one for the pubsub specification
to resolve; there are other ways of introducing access control, at least in a component
environment; use of a mechanism that the Jabber::Component::Proxy Perl module represents
is one example: wedge a proxy component in front of a real (pubsub) component and have the
ability to use ACLs (access control lists) to control who gets to connect to the real component.

4Even if there is no provision for querying the subscribers, perhaps we should make a provision for the publisher
to ask the pubsub component for a list of namespaces that have been subscribed to (for that publisher).

18

	Abstract
	Introduction
	The Specification
	Subscribe/Unsubscribe Context
	Publisher-Specific Subscriptions and Unsubscriptions
	Non-Publisher-Specific Subscriptions and Unsubscriptions
	Further Notes

	Publish Context
	Distributing Published Information
	Delivery Sensitivity
	Use of Resources

	Implementation Notes
	Publisher Discovery
	Cross-Server Relationships
	Proxy Subscriptions
	Willingness to Serve

	Subscriber Anonymity and Acceptance?

